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For large classes of vorticities we prove that a steady periodic gravity water wave
with a monotonic profile between crests and troughs must be symmetric. The analysis
uses sharp maximum principles for elliptic partial differential equations.

1. Introduction
We discuss two-dimensional periodic gravity waves which propagate steadily on a

shearing water flow over an impermeable and flat bed. These are plane waves on the
water surface, with no variation along their crests, and for which the momentum and
gravity forces are dominant – we neglect capillarity and viscosity. The inviscid setting
is realistic since the time scales/length scales associated with an adjustment of the
flow conditions due to viscosity are long compared with the wave period/wavelength
(Johnson 1997). Also, for water waves with wavelengths much above 1.74 cm the effect
of surface tension is very small and can be neglected (Lighthill 1978). While most
studies of water waves are restricted to irrotational flows, there are many circum-
stances where vorticity plays an essential role. Waves with vorticity are commonly
seen in nature. For example, if the water is shallow and waves are long, the shear
caused by currents can become a dominant feature of the wave motion (Peregrine
1976). Since the waves are long compared with the water depth, in this case it is
the existence of a non-zero mean vorticity that is important rather than its specific
distribution (Teles da Silva & Peregrine 1988). On areas of the continental shelf and
in many coastal inlets the most significant currents are the tides (Jonsson 1990). They
are the most regular currents and the assumption of constant vorticity is realistic
(Swan, Cummins & James 2001). Constant vorticity, however, does not give a good
description of wind drift currents, like the major ocean currents such as the Gulf
Stream (Jonsson 1990). Also, out-flowing waves at the mouth of an estuary generally
exhibit a non-uniform vorticity distribution (Swan et al. 2001). Even in appropriate
experimental situations where it is to regard the flow as being irrotational, it is
important to know that the main features of the irrotational case also occur for flows
with small vorticity. For example, the study of waves propagating into still water is
usually performed within the irrotational framework. However, a uniform vorticity
always tends to be generated at the free surface of a progressive wave advancing into
still water and this vorticity is propagated slowly downwards from the free surface,
as has been verified experimentally (Longuet-Higgins 1953, 1960).
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The existence of regular wave trains for irrotational flows is well established
(Amick & Toland 1981; Keady & Norbury 1978). In 1809 Gerstner constructed an
explicit example of a periodic travelling wave in water of infinite depth with a
particular non-zero vorticity – see (Constantin 2001) for a discussion. It is intriguing
to speculate that there might be also exact solutions for finite depth. However, it seems
that no exact solution for gravity waves on water of finite depth is known, and one of
the most significant advances has been the development of computationally efficient
numerical models by Teles da Silva & Peregrine (1988). Numerical investigations for
general vorticity (Baddour & Song 1998) indicate that regular wave trains are possible
only in the case of constant vorticity. However, the existence of regular wave trains
for flows with non-constant vorticity can be established (Constantin & Strauss 2002,
2004). The result of the present study confirms that regular wave trains for flows with
vorticity are quite ubiquitous.†

Theorem 1. Consider a steady periodic wave train propagating over the flat bed y = 0
with relative mass flux −m < 0. Assume that the wave profile y = η(x) is monotonic
between crests and troughs. Then the wave is symmetric, provided

γ ′(s) max
x∈�

η2(x) < π2, 0 � s � m, (1)

where γ ∈ C1([0, m], �) is the vorticity function of the flow.

There are two important situations in which (1) holds. If the vorticity is decreasing
with depth (that is, γ ′ � 0), then our result excludes non-symmetric steady periodic
gravity waves with profiles that are monotonic between crests and troughs. For other
vorticity distributions the above conclusion holds provided the maximal elevation of
the water above the flat bottom is small enough. In the case of constant vorticity our
investigation may be regarded as a small step towards finding theoretical confirmation
of the very striking numerical results given in Teles da Silva & Peregrine (1988).
Note that in the special case γ ≡ 0 (irrotational flow) Garabedian (1965) proved
the symmetry of steady periodic gravity waves with one local maximum and one
local minimum per wavelength on every streamline except for the flat bottom – we
refer to (Toland 2000) for a simpler proof. In contrast to Garabedian’s and Toland’s
variational approaches, our method is based on symmetrization and sharp maximum
principles for subsolutions to second-order elliptic partial differential equations (Serrin
1971; Gidas, Ni & Nirenberg 1979). Considerations similar to ours have been pre-
sented in Okamoto & Shoji (2001) for the simpler case of irrotational flows.

In § 2 we formulate the physical problem in mathematical terms. Section 3 contains
the proof of the Theorem.

2. Preliminaries
In this section we recall the governing equations for the propagation of two-

dimensional gravity waves on water and we give a reformulation suitable for our
purposes.

The motion is identical in any direction orthogonal to the direction of propagation
of the wave. Therefore it suffices to analyse a cross-section of the flow, perpendicular

† This does not exclude the possibility of the existence of non-symmetric waves as it appears
(Smith 1976) that large asymmetric waves are possible on currents in deep water. Note, however,
that the asymmetric waves calculated by Smith (1976) were not periodic.
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Figure 1. The problem under consideration.

to the crest line. We choose Cartesian coordinates (x, y) so that the horizontal x-axis
is in the direction of wave propagation, the y-axis points vertically upwards and the
origin lies on the flat bed (see figure 1). Let y = η(t, x) denote the free surface of the
water and let (u(t, x, y), v(t, x, y)) be the velocity field of the flow. In the study of sea
waves it is appropriate to regard water as an incompressible fluid (Lighthill 1978).
Thus, conservation of mass implies that

ux + vy = 0. (2)

Furthermore, since gravity waves should be considered inviscid (Teles da Silva &
Peregrine 1988), the flow is governed by Euler’s equation

ut + uux + vuy = −Px,

vt + uvx + vvy = −Py − g,

}
(3)

where P (t, x, y) denotes the fluid pressure and g is the gravitational constant of
acceleration. Neglecting the effects of surface tension, the dynamic boundary condition

P = P0 on y = η(t, x), (4)

P0 being the constant atmospheric pressure, decouples the motion of the air from that
of the water (Crapper 1984). The kinematic boundary conditions

v = ηt + uηx on y = η(t, x), (5)

and

v = 0 on y = 0, (6)

express, respectively, that the same particles always form the free surface, and that it
is impossible for the water to penetrate the rigid bed (Johnson 1997). Summarizing,
(2)–(6) form the governing equations for two-dimensional gravity water waves.

Given c > 0, we consider wave trains travelling at speed c. That is, we assume that
the (x, t)-space–time dependence of the free surface, of the pressure, and of the velocity
field has the form (x − ct), and that P, u, v, and η all display a periodic dependence
upon the x-variable of minimal period, say, L > 0. The change of frame (x − ct, y) �→
(x, y) eliminates time from the problem. In the new moving reference frame the wave
is stationary and the flow is steady. Concerning regularity, we impose that η ∈ C3(�)
and (P, u, v) ∈ C1(Dη) × C2(Dη) × C2(Dη), where Dη := {(x, y) ∈ �2; 0 � y � η(x)} is
the closure of the fluid domain. Experimental evidence indicates that for wave
patterns that are not near the spilling or breaking state, the propagation speed of
the surface wave is in general considerably larger than the speed of each individual
water particle (Banner & Peregrine 1993; Lighthill 1978). In view of this, we require
that u < c throughout the whole fluid body.



174 A. Constantin and J. Escher

The mass flux across x = x0 relative to the uniform flow at speed c is

∫ η(x0)

0

[u(x0, y) − c] dy.

Using (5) and (6), this expression can be seen to be independent of x0. This leads us
to define the relative mass flux as

M :=

∫ η(x)

0

[u(x, y) − c] dy, x ∈ �.

Note that M < 0, since u, < c throughout the fluid. To facilitate notation, we set
m := −M > 0.

It is convenient to formulate the water wave problem in terms of the (relative)
stream function ψ(x, y) defined by

ψx = −v, ψy = u − c. (7)

The stream function is given explicitly by

ψ(x, y) = ψ0 +

∫ y

0

[u(x, ξ ) − c] dξ,

and is uniquely determined up to the constant ψ0 ∈ �. The boundary conditions (5)
and (6) show that ψ is constant on the free surface y = η(x) and on the flat bed
y = 0, respectively. If we normalize ψ to be zero on the free surface (this amounts
to choosing ψ0 = m), the definition of the relative mass flux forces ψ =m on y =0.
Therefore, ψ is a strictly decreasing function of the height y. Since ψ is of class C2,
the assumption u − c = ψy < 0 ensures by the implicit function theorem that the level
sets of ψ are locally C2-curves. However, relation (7) shows that ψy < 0 inside the
fluid domain so that ψ is a strictly decreasing function of the height y. Combining
all this, we conclude that the streamlines ψ = constant ∈ [0, m] give a foliation of the
fluid domain, the wave profile y = η(x) being the streamline ψ = 0, and the flat bed
y = 0 corresponding to ψ = m, respectively. Let ω := vx − uy denote the vorticity of
the flow. Then �ψ = −ω. From the above definition of ψ we obtain

(u − c)ψx + vψy = 0. (8)

On the other hand, taking the curl of the Euler equation (3) yields

(u − c)ωx + vωy = 0. (9)

Relation (8) shows that (u − c, v) at (x0, y0) points in the direction of the tangent
τ (x0, y0) to the level curve C of ψ passing through (x0, y0). Therefore, (9) forces that
∇ω(x0, y0) is either zero or orthogonal to τ (x0, y0). In both cases this implies that ω

is constant on C, as shown by a simple differentiation along this curve. Since ω is
constant along the level curves of ψ , we have that, at least locally, ω is a function
of ψ . Since u < c, one can prove that there is γ ∈ C1([0, m], �) such that ω = γ (ψ)
throughout the fluid (Constantin & Strauss 2004). The vorticity function γ is a
measure of the strength of the vorticity.

It follows from (3) and (7) that the total energy

E :=
(u − c)2 + v2

2
+ gy + P − Γ (−ψ)
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is constant within fluid, where

Γ (s) :=

∫ s

0

γ (−ξ ) dξ for s ∈ [0, m].

This is Bernoulli’s Law. In the expression for E, the sum of the first three terms
represents the total mechanical energy of the flow, which can be measured at any
location with a piezometer. Here 1

2
[(c − u)2 + v2] is the kinetic energy (energy of

motion), gy is the gravitational potential energy (energy of position) and P is the
energy of fluid pressures (exerted on a particle by the surrounding fluid acting upon
it). Bernoulli’s Law shows, in view of (7), that the kinematic boundary condition (4)
is equivalent to

|∇ψ |2 + 2gy = C on y = η(x),

where C := 2(E − P0). Summarizing, we obtain the following nonlinear elliptic free
boundary value problem

�ψ = −γ (ψ) in 0 < y < η(x),

|∇ψ |2 + 2gy = C on y = η(x),

ψ = 0 on y = η(x),

ψ = m on y = 0,




(10)

to be satisfied for η ∈ C3(�) and ψ ∈ C2(Dη), both L-periodic in the x-variable. The
fact that the problem (10) is equivalent to the governing equations (2)–(6) is proved
in Constantin & Strauss (2004).

3. Proof of the theorem
Our approach is based on a device of moving parallel lines to a critical position and

then showing that the solution is symmetric about the limiting line the moving plane
method – see (Serrin 1971; Gidas et al. 1978). Throughout the analysis we employ
sharp maximum principles for elliptic partial differential equations, which we present
now as a lemma in a form suitable for our purposes.

Lemma 1. Let Ω be the open domain in the (x, y)-plane lying between the graph
y = f (x) of a positive continuous function f : [a, b] → (0, ∞) and the horizontal line
y = 0. That is, Ω = {(x, y) ∈ �2: a <x <b, 0 < y < f (x)}. For functions b1, b2, c ∈
C(Ω, �) such that c(x, y) � 0 throughout Ω , define the elliptic operator

L = ∂2
x + ∂2

y + b1(x, y) ∂x + b2(x, y) ∂y + c(x, y).

(i) If w ∈ C2(Ω) ∩ C(Ω) is such that Lw � 0 in Ω and w � 0 on the boundary ∂Ω

of Ω , then w > 0 in Ω unless w ≡ 0 in Ω .
(ii) Let w ∈ C2(Ω) ∩ C(Ω). Suppose that w � 0 in Ω , Lw � 0 in Ω , and w =0 at

some point Q ∈ ∂Ω . If Ω satisfies an interior sphere condition (That is, there exists a
small open ball contained in Ω with Q on its boundary) at Q, then the outer normal
derivative ∂w/∂ν of w at Q, if it exists, satisfies the strict inequality ∂w/∂ν < 0, unless
w ≡ 0 on Ω .

(iii) Assume that f is twice continuously differentiable and let T be the line containing
the normal to y = f (x) at some point Q ∈ ∂Ω . Let Ω0 then denote the portion of Ω

lying on some particular side of T . Suppose that w ∈ C2(Ω0) satisfies Lw � 0 in Ω0,
while also w � 0 in Ω0 and w = 0 at Q. Then either ∂w/∂µ > 0 or ∂2w/∂µ2 > 0 at Q

unless w ≡ 0 on Ω0, where µ is any direction at Q which enters Ω non-tangentially.
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Q

X0

0–L/2 L/2

Figure 2. Case (a).

Assertions (i) and (ii) are respectively the Weak and the Hopf Maximum Principle,
whereas (iii) is a version of the Edge Point Lemma proved in Fraenkel (2000).

Proof of the theorem. For simplicity we choose the trough of the surface wave
y = η(x) at x = ±L/2. Let η0 = maxx∈�{η(x)} > 0. In view of (1), there is some
δ ∈ (0, 1/2) such that

η2
0 γ ′(s) � π2(1 − 2δ)2, 0 � s � m. (11)

Let us now introduce the function

α(y) = sin π

[
(1 − 2δ)

y

η0

+ δ

]
, 0 � y � η0.

The argument of the sine in the definition of α(y) belongs to [πδ, π − πδ] so that
0 < sin(πδ) � α(y) � 1 for all y ∈ [0, η0].

For x∗ ∈ (−L/2, 0] we define

D∗ = {(x, y) ∈ �2 : −d < y < η(x) for − L/2 < x < x∗}.
The map (x, y) �→ (2x∗ − x, y) reflects the domain D∗ in the line x = x∗ into a domain
DR

∗ . Since x = −L/2 is the location of the wave trough, the monotonicity property
of the free surface ensures the existence of some ε > 0 small enough such that the
function x �→ η(x) is non-decreasing on (−L/2, −L/2 + ε). Therefore DR

∗ is a subset
of the fluid domain

D = {(x, y) ∈ �2: 0 < y < η(x)}
for all x∗ ∈ (−L/2, −L/2 + ε). As we increase x∗ from −L/2 there is some maximal
x0 ∈ (−L/2, 0] such that DR

∗ is included in D for all x∗ ∈ (0, x0). Note that DR
0 ,

corresponding to x∗ = x0, is still a subset of D. At x = x0 one of the following three
situations occurs:

(a) x0 = 0;
(b) the vertical line x = x0 is normal to the free surface y = η(x) at the crest point

(x0, η(x0));
(c) DR

0 is internally tangent to the boundary y = η(x) at some point.
Let us first assume that (a) occurs – a typical case is depicted in figure 2.
Let Q =(−L/2, η(−L/2)) and define

w(x, y) =
ψ(−x, y) − ψ(x, y)

α(y)
, −L/2 � x � 0, 0 � y � η(x),

where ψ is the stream function introduced in § 2. To state the theorem if (a) occurs,
we claim that it suffices to show that w ≡ 0 in

Ω0 = {(x, y) ∈ �2: −L/2 < x < 0, 0 < y < η(x)}.
Then ψ(−x, η(x)) = ψ(x, η(x)) for all x ∈ [−L/2, 0]. Since the free surface y = η(x)
is given implicitely by ψ = 0, we infer that ψ(−x, η(x)) = ψ(−x, η(−x)) = 0 for all
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x ∈ [−L/2, 0]. The injectivity of the function y �→ ψ(x, y) for every fixed x, ensured
by ψy = u − c < 0, yields η(x) = η(−x) for every x ∈ [−L/2, 0]. Therefore the wave is
symmetric.

To prove that w ≡ 0 in Ω0, we proceed as follows. Observe that w ∈ C2(Ω0). The
periodicity property of ψ implies w = 0 on x = ±L/2. Moreover, w =0 on the bottom
y = 0, as ψ =m there. Since x0 = 0, we deduce that (−x, η(x)) ∈ D for all x ∈ (−L/2, 0).
Therefore ψ(−x, η(x)) � 0 for all x ∈ (−L/2, 0), as ψ � 0 within the fluid. On the other
hand, ψ(x, η(x)) = 0 for x ∈ (−L/2, 0) in view of (10). Hence w(x, η(x)) � 0 for all
x ∈ (−L/2, 0). Thus w � 0 on the boundary ∂Ω0 of Ω0. At this point, note that a
simple calculation confirms the identity

�

(
w0

α

)
+ 2

αy

α
∂y

(
w0

α

)
=

�w0

α
− αyy

α

w0

α

for all C2-functions w0(x, y) and α(y). We choose

w0(x, y) = ψ(−x, y) − ψ(x, y), −L/2 � x � 0, 0 � y � η(x),

whereas α(y) is given in the beginning of the proof. Since �ψ = −γ (ψ) throughout
the fluid and w0 = αw, the above identity becomes

�w + 2
αy

α
∂yw +

γ̃

α
− π2(1 − 2δ)2

η2
0

w = 0, −L/2 � x � 0, 0 � y � η(x),

where γ̃ (x, y) = γ (ψ(−x, y)) −γ (ψ(x, y)). The mean value theorem ensures the exis-
tence of some s0(x, y) ∈ (0, m) such that γ̃ (x, y) = γ ′(s0)[ψ(−x, y) − ψ(x, y)]. It follows
that

�w + 2
αy

α
∂yw + w

(
γ ′(s0) − π2(1 − 2δ)2

η2
0

)
= 0, −L/2 � x � 0, 0 � y � η(x).

In view of the above equation and (11), the fact that w � 0 on ∂Ω0 ensures by the
Lemma, part (i), that either w > 0 in Ω0 or w ≡ 0 on Ω0. Noticing that w = 0 at Q,
part (iii) of the Lemma (with T = {x = − L/2}) yields w ≡ 0 in Ω0 if at the point
Q all partial derivatives of w of order less than or equal to 2 are equal to zero.
We now show that this is the case. First, the way we defined the periodic function
w guarantees that wy(Q) = wxx(Q) = wyy(Q) = 0 since w(Q) = 0. Differentiating the
relation ψ(x, η(x)) = 0, we obtain ψx +ψyη

′ = 0 on y = η(x). But η′(−L/2) = 0 since Q

is the wave trough, so that ψx(Q) = 0 and wx(Q) = − 2 ψx(Q)/α(Q) = 0. It remains to
show that wxy(Q) = 0. Differentiating the nonlinear boundary condition on y = η(x)
from (10) with respect to x, we obtain

ψx(ψxx + ψxyη
′) + ψy(ψxy + ψyyη

′) + gη′ = 0 on y = η(x).

Evaluating this at the wave trough Q, where η′ = ψx = 0, we obtain ψy(Q)ψxy(Q) = 0.
Since by assumption ψy = u − c < 0, we must have ψxy(Q) = 0. But

wxy(Q) = −2
ψxy(Q)

α(Q)
− αy(Q)

α(Q)
wx(Q),

and we conclude that wxy(Q) = 0 since we already know that wx(Q) = 0. Therefore
the wave is symmetric if case (a) occurs.

Let us now analyse the alternative (b) – see figure 3. Note that we must have x0 � 0
and, since x0 = 0 is precisely case (a), we may assume that x0 < 0. The defining pro-
perty of x0 ensures that the domain DR

0 , obtained by reflecting D0 = {(x, y) ∈ �2:
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Figure 3. Case (b).

−L/2 <x <x0, 0 < y < η(x)} in the line x = x0 by means of the transformation
(x, y) �→ (2x0 − x, y), is contained within the fluid domain D. Since (x0, η(x0)) is
the wave crest, the wave profile y = η(x) is decreasing on [x0, L/2]. Therefore, letting
x1 = 2x0 + L/2 and x2 = x0 + L/2, the reflection via the transformation (x, y) �→ (2x2 −
x, y) of the domain {(x, y) ∈ �2 : x2 < x < L/2, 0 <y <η(x)} in the line x = x2, is also
contained within D. Observe that this reflection maps the line {x = L/2} into {x = x1}.
We now define

w(x, y) =




ψ(x, y) − ψ(2x0 − x, y)

α(y)
, x0 � x � x1, 0 � y � η(2x0 − x),

ψ(x, y) − ψ(2x2 − x, y)

α(y)
, x1 � x � x2, 0 � y � η(2x2 − x),

and we claim that it suffices to show that w ≡ 0 on the closure of the domain

Ω0 = {(x, y) ∈ �2 : x0 < x < x2, 0 < y < η̃(x)}.

Here

η̃(x) =

{
η(2x0 − x), x0 � x � x1,

η(2x2 − x), x1 � x � x2.

Indeed, w ≡ 0 on Ω0 implies that ψ(2x0−x, η(2x0−x)) = ψ(x, η(2x0−x)) for x ∈ [x0, x1]
and ψ(2x2 − x, η(2x2 − x)) = ψ(x, η(2x2 − x)) for x ∈ [x1, x2]. Since ψy = u − c < 0

throughout D and the implicit equation of the free surface is ψ(x, η(x)) = 0, we deduce
that η(x) = η(2x0 − x) for x ∈ [−L/2, x1] and η(x) = η(2x2 − x) for x ∈ [x1, L/2]. That
is, the wave profile y = η(x) is symmetric with respect to x = x0 on [−L/2, x1] and
with respect to x = x2 on [x1, L/2]. But the profile is supposedly monotonic between
crest and trough, that is, on each of the intervals [−L/2, x0] and [x0, L/2]. This
contradiction eliminates the possibility x0 < 0. Therefore x0 = 0 and the analysis we
pursued in case (a) shows that the wave is symmetric.

To verify that w ≡ 0 in Ω0 we will apply part (iii) of the Lemma with Q = (x0, η(x0))
and T = {x = x0}. First, note that w ∈ C2(Ω0) and the function η̃ is twice continuously
differentiable on [x0, x2] with η̃′(x1) = 0. Similar to case (a), we see that w � 0 on the
top boundary of Ω0, while w = 0 on the lateral and bottom boundaries of Ω0. Also,
just like in case (a), we see that

�w + 2
αy

α
∂yw + c(x, y) w = 0, (x, y) ∈ Ω0,

for some c ∈ C(Ω0) with c(x, y) � 0 throughout Ω0. Therefore, we may apply part (i)
of the Lemma to infer that either w > 0 in Ω0 or w ≡ 0 on Ω0. Since (x0, η(x0)) is the
crest of the wave, we have η′(x0) = 0. An argument analogous to that pursued in the
case of (a) confirms that at the point Q all partial derivatives of w of order less than
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Figure 4. Case (c).

or equal to 2 are equal to zero. But w =0 at Q, so that by the Lemma, part (iii), we
conclude that w ≡ 0 in Ω0. Therefore symmetry also holds in case (b).

It remains to investigate the last alternative (c), corresponding to figure 4. Since
x0 = 0 characterizes case (a), we may assume that x0 < 0 (clearly x0 � 0). Again, let
x1 = 2x0 +L/2 and x2 = x0 +L/2. Since the contact point Q =(ξ1, η(ξ1)) of the upper
boundaries of DR

0 and D has to be located on the decreasing part of the wave
profile, the reflection of the domain {(x, y) ∈ �2 : x2 <x <L/2, 0 <y <η(x)} in the
line x = x2, achieved through the transformation (x, y) �→ (2x2 − x, y), is contained in
D. This reflection maps the line {x = L/2} into {x = x1}.

Just like in the case of the alternative (b), to prove the symmetry of the wave it
suffices to show that the function

w(x, y) =




ψ(x, y) − ψ(2x0 − x, y)

α(y)
, x0 � x � x1, 0 � y � η(2x0 − x),

ψ(x, y) − ψ(2x2 − x, y)

α(y)
, x1 � x � x2, 0 � y � η(2x2 − x),

is identically zero on the closure of the domain

Ω = {(x, y) ∈ �2 : x0 < x < x2, 0 < y < η̃(x)},

where, as before,

η̃(x) =

{
η(2x0 − x), x0 � x � x1,

η(2x2 − x), x1 � x � x2.

Observe that w ∈ C2(Ω) and η̃ is twice continuously differentiable on [x0, x2].
Let us prove that w ≡ 0 on Ω . Since ψ � 0 below the free surface y = η(x) and

ψ = 0 on the free surface, we have that w � 0 on y = η̃(x). The definition of w and
the periodicity property of ψ ensure that w = 0 on {x = x0} and on {x = x2}. Also,
w = 0 on y = 0 since ψ = m on the flat bottom. Similarly to case (a), we have that

�w + 2
αy

α
∂yw + c(x, y)w = 0, (x, y) ∈ Ω,

for some c ∈ C(Ω) with c(x, y) � 0 throughout Ω . Therefore, by part (i) of the Lemma,
w > 0 in Ω unless w ≡ 0 on Ω . We now claim that ∂w/∂ν =0 at Q, where ν is the
outer normal to Ω at Q, implies w ≡ 0 on Ω . Indeed, the tangency property at
Q ensures that Ω satisfies an interior sphere condition at Q. Moreover, note that
η(ξ1) = η(2x0 − ξ1) yields ψ(ξ1, η(2x0 − ξ1)) = ψ(ξ1, η(ξ1)) = ψ(2x0 − ξ1, η(2x0 − ξ1)) = 0
as ψ = 0 on the free surface. Therefore w =0 at Q, and (∂w/∂ν)(Q) = 0 implies w ≡ 0
on Ω in view of part (ii) of the Lemma. To check that (∂w∂ν)(Q) = 0, let ξ0 = 2x0 − ξ1.
The tangency property at Q yields

η(ξ0) = η(ξ1) and η′(ξ0) = −η′(ξ1). (12)
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On the other hand, differentiating the relation ψ(x, η(x)) = 0 with respect to x, we
obtain ψx + ψyη

′ = 0 on y = η(x). Combining this with (12), we obtain that

ψx

ψy

(ξ0, η(ξ0)) = −ψx

ψy

(ξ1, η(ξ1)), (13)

since ψy = u − c < 0 by assumption. Note also that (12) and the nonlinear boundary
condition on y = η(x) from (10) yield

|∇ψ |2(ξ0, η(ξ0)) = |∇ψ |2(ξ1, η(ξ1)). (14)

Since ψy = u − c < 0 thoroughout D, we deduce from (13) and (14) that

ψx(ξ0, η(ξ0)) = −ψx(ξ1, η(ξ1)) and ψy(ξ0, η(ξ0)) = ψy(ξ1, η(ξ1)).

This forces ∂w/∂ν = 0 at Q, if we take into account the definitions of ψ , α, ξ1, and
ξ0, and note that η(ξ0) = η(ξ1). The proof is complete. �

4. Discussion
We have proved that for a flow with vorticity that is decreasing with depth all

periodic steady waves are symmetric if their profile is a single-valued function which
is monotonic between each crest and trough. In particular, this symmetry property
holds for irrotational waves. Note that Garabedian (1965) proved the symmetry of
waves with one local maximum and one local minimum per wavelength on every
streamline except for the flat bottom. Toland (2000) gave a simplified argument
for symmetry under the same restrictive hypothesis. In the irrotational case we only
require that the streamline represented by the free surface has one local maximum and
one local minimum per wavelength. We therefore recover in the case of irrotational
flow the improved version of Garabedian’s result presented in Okamoto & Shoji
(2001). While our approach has similarities, in its use of maximum principles and in
how it exploits reflection methods, to that of Okamoto & Shoji (2001), our theorem
is a genuine improvement upon the irrotational case. Indeed, our theorem applies to
a large class of flows with non-constant vorticity whereas the proof of Okamoto &
Shoji (2001) can be adapted with no essential differences only to the case of constant
vorticity.

Teles da Silva & Peregrine (1988) present numerical evidence of periodic
overhanging wave profiles on flows of constant vorticity. It would be interesting
to extend the present analysis by finding an approach that allows one to handle
overhanging wave profiles. A further aspect of interest would be the case of arbitrary
vorticity distributions, where recent investigations by Constantin & Strauss (2002,
2003) show the existence of symmetric steady periodic waves. The question of whether
symmetry for such flows is generally guaranteed for gravity waves with monotonic
profiles between crest and trough is only partially answered by our main result since
a restriction on the maximal elevation of the water above the flat bottom is required
for (1) to hold.

Useful suggestions and comments by the referees are gratefully acknowledged.
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